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Today in class, we found the angular velocity of a rod falling about one end,
as shown in the figure below:
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Figure 1: A rod fixed about its end and allowed to fall under the influence of
gravity.

If the rod has mass m and length l, we want to find the angular velocity at
the bottom (i.e. when θ = π/2). The purpose of this document is to go over two
methods: (1) the conservation of energy, as shown in class, and (2) Newton’s
laws of motion. Unsurprisingly, these two methods give identical results.

1 Conservation of Energy

When the rod is at the bottom, its center of mass has fallen an distance l/2.
The corresponding change in potential energy is U = mgl/2. This lost potential
energy is transformed into rotational kinetic energy of the form K = Iω2/2,
where the moment of inertia I of a rod about its end is equal to ml2/3. We can
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then say:
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2 Newton’s Laws of Motion

Alternatively, we can consider the equations of motion and use a little calculus
to arrive at the same result. Newton’s second law tells us that, for a rotating
object, Στ = Iα. The only force that exerts a torque on the rod is gravity, which
always points directly down. With some geometry, we can determine that the
component of gravity normal to the rod (and thus exerting a torque about the
pivot) is mg cos θ, and it acts at a distance l/2 from the pivot. Then we have:

Στ = Iα
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Recall that α is the time derivative of ω. Then by the chain rule, we see
that we can make the substitution:
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The resulting equation can easily be separated and integrated:
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But since ω = 0 at θ = 0, we have C = 0. Then solving for ω at θ = π/2 is
simple:
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