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Let us consider the range of a particle that undergoes a vertical displacement
∆y and is launched with initial velocity v0 at an angle θ. For convenience, we
will set the origin (0, 0) at the place from which the projectile is launched, so
∆x and ∆y become x and y. We start with the constant-velocity kinematics
equations:

x = (v0 cos θ)t ⇒ t = x/(v0 cos θ)

y = (v0 sin θ)t− (g/2)t2 (1)

Substituting t, we see that:

y =
xv0 sin θ

v0 cos θ
− gx2

2v20 cos2 θ

y = x tan θ − gx2

2v20 cos2 θ
(2)

If we like, we can rearrange and apply some trigonometric identities to solve
for v0 as:

v20 =
gx2

x sin 2θ − 2y cos2 θ
(3)

From here, there are two ways to proceed: a messy numerical way and an
elegant algebraic way. I’ll present both, since the messy way is mine, but I
wanted to share the elegant method I found on-line:

1 The Messy Way

Really, we would ultimately like to have the range x as a function of the angle
θ. Fortunately, this equation is quadratic in x:

gx2 − (v20 sin 2θ)x+ 2v20y cos2 θ = 0 (4)

So we can apply the quadratic formula to obtain:

x =
v20 sin 2θ +

√
(v20 sin 2θ)2 − 8gv20y cos2 θ

2g
(5)

1



Let’s take a look at the general shape of this graph, by setting v = 5 and
g = 9.81: and plotting against various values of y:
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Let’s consider the graph for a moment. It seems to be about what we
would expect: there is a maximum range at some angle between 0 and π/4, and
when the angle is π/2 (the projectile is shot straight up), there is no horizontal
displacement. We also see that as the vertical displacement increases, the angle
that achieves the maximum horizontal displacement gets smaller.

Now let’s consider what value of θ will maximize x. We can do this by
differentiating with respect to θ and setting dx/dθ = 0. Ths gives us the
extremely nasty looking expression for our optimal angle θ:

v20 cos 2θ

g
+

v40 sin 4θ + 4gv20y sin 2θ

2g
√

(v20 sin 2θ)2 − 8gv2y cos2 θ
= 0 (6)

Honestly, you couldn’t pay me enough money to go near that thing analyti-
cally; our best bet is to solve it numerically. We can do this, for example, with
a short Python script:

import numpy as np
import scipy.optimize as opt

# these are the physical constants obtained during the lab
v = 3.079 # initial velocity, m/s
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g = 9.81 # gravitational acceleration, m/sˆ2
y = -0.76 # vertical displacement, m

def dx_dt(t):
# for sanity, we’ll break the big, nasty equation into the form:
# A + B / C
A = (v ** 2) * np.cos(2*t) / g
B = (v ** 4) * np.sin(4*t) + 4 * g * (v ** 2) * y * np.sin(2*t)
C = 2*g*np.sqrt((v*v*np.sin(2*t))**2 - 8*g*v*v*y*(np.cos(t))**2)
return A + B / C

print opt.newton_krylov(dx_dt, 0.2)

This gives us the angle θ = 0.557473 . This is about 31.9409◦, which agrees
extremely well with the 30◦ − 35◦ range obtained experimentally in class.

2 The Elegant Way

Unfortunately, the messy way doesn’t give us much physical insight into the
situation; it’s pretty hard to visualize what’s going on with all those trigono-
metric functions. But actually, there’s a very elegant sleight of hand that can
be performed in Equation 2 to give a much more beautiful solution. Recalling
that 1/ cos2 θ = sec2 θ = (1+tan2 θ), we can substitute u = tan θ and k = g/2v20
to obtain:

y = ux− kx2(1 + u2)

= −kx2 + ux− kx2u2 (7)

We can implicitly differentiate with respect to u to get:

0 = −2kx
dx

du
+ x+ u

dx

du
− 2kxu2

dx

du
− 2kx2u (8)

At the maximum, dx/du = 0, so:

0 = x(1− 2kxu) (9)

This implies that x = 1/2ku. Substituting this back into Equation 7 and
simplifying, we can then write:

u2(1− 4ky) = 1 (10)

Recalling our original expressions for u and k, we finally see that to achieve
maximum range, we should set:

θ = tan−1 1√
1− 2gy/v20

(11)

Using the values from our lab, we again get θ = 0.557473 (n.b. we set y to
be negative here, even though we set g to be positive). This now gives us better
insight: as y gets larger in magnitude, the denominator grows, so the angle gets
smaller and smaller.
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