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1 Introduction

As seen in lecture, there is a polynomial P of degree 25 in 26 variables such
that P(N?6) NN is precisely the set of primes. This polynomial was constructed
by Jones, Sato, Wada, and Wiens in [Jones76], and it is a consequence of the
following theorem from their paper.

Theorem 1 (Jones et al., Theorem 2.12). For any integer k > 1, in order that
k+1 be prime it is necessary and sufficient that there exist nonnegative integers
a7 b? Cl d7 67 f7 g} h7 7:) j? k} l7 m7 n7 0! p) q7 T‘7 87 t? u? U? w7 ',1;7 y} z SUCh that"

(1) g=wz+h+3j,

(2) z=(gk+g+k)(h+j)+h,

(3) (2k)3(2k +2)(n +1)2 +1 = f?,

(4) e=p+q+z+2n,

(5) e(e+2)(a+1)*+1=0%

(6) z* = (a® = 1)y* + 1,

(7) u? =16(a® — )r2y* + 1,

(8) (z+cu)® = [(a+u?(u? —a))? — 1] (n + 4dy)* + 1,
(9) m? = (a® - 1)I® + 1,

(10) l=k+i(a—1),

(11) n+l+v =y,

(12) m=p+1la—n—1)+b2a(n+1)— (n+1)2 - 1),
(13) =q+yla—p—1) +s2a(p+1) - (p+1)* - 1),

(14) pm = z +pl(a — p) + t(2ap — p* — 1).



Remark. Theorem [I|requires that k > 1, and correspondingly the prime is k+ 1.
When constructing the polynomial, it is preferable to allow k > 0 instead, so we
replace k with k + 1; correspondingly, the prime becomes k + 2. We will stick
to the £ > 1 convention in our analysis, so that the prime is k + 1 rather than
k+2.

The “trick” behind this is to encode the factorial function in Diophantine
equations, and then to use Wilson’s theorem to characterize the primes.

Despite this being a fairly old construction, I was unable to find anywhere
online a correct assignment witnessing the prime 2 (k = 1). But with the help
of Mathematica and some lemmata from [Jones76] and [Davis73], we can find a
solution—it turns out that the numbers are quite large.

The rest of this paper is structured as follows: first, we briefly list some
relevant lemmata about solutions to the Pell equation. Then, we give an explicit
solution to Theorem [1| witnessing the prime 2. Most of the constraints can be
verified by a computer, but in particular constraints 7 and 8 contain numbers
far too large to be automatically verified, so we will give explicit arguments for
them.



2 The Pell Equation
The Pell equation, for some a > 1, is
2 = (a® = 1)y* + 1.

The solutions are known to be of the form (z,y) = (xa(n), ¥a(n)), where x and
1 are defined by the recurrences

Xa(n +2) =2a- xa(n + 1) = xa(n)

Xa(0) =1 Xa(1) =a
1 Ya(n+2) =2a-Ya(n+1) = Pa(n).

'(/Ja(o) =0 ’(/}a(l)

Moreover, all pairs (z,y) of this form are solutions. For our purposes, we will
only need the following results, which are proven in [Davis73):

Lemma 1 (Davis, Lemma 2.11). t,(n)? | ¥ (n - ¥a(n)).

Lemma 2 (Davis, Lemma 2.15). If a =b mod ¢, then for all n,

Xa(n) = xp(n) mod c.

Since we will be expressing some values in our solution in terms of x and v,
it is nice to have closed form expressions for them. We can derive a closed form
for x4 (n) by applying some standard tricks: observe that

()= () ()

The matrix has eigenvalues A\; = a — Va2 —1 and Ay = a + Va? -1, and

eigenvectors
A A
() ()

Now (a,1) = (v1 + v2)/2, so applying linearity, we see that
1 n n
Xaln) = 3 (7 +25).
We can apply the same process to determine ,(n); the only difference is that
the initial value is (1,0) = (v2 — v1)/2v/a? — 1, so the solution is

1 n n
Ya(n) = ﬁ (Ay = AT).



3 An Explicit Solution

Claim 1. A nonnegative integer solution to the constraints in Theorem/[d], cor-
responding to the prime k+ 1 =2, is:
a = 7901690358098896161685556879749949186326380713409290912
b=20
2(a+u?(u? —a))? —x—1

CcC =

U
de 2(a+u?(u? —a)) —n
4y

e =32

=17

g=20

h=2

1=0

j=5

k=1

l=1
m=a

n=2

0 = 8340353015645794683299462704812268882126086134656108363777
p=3

q=16

_ Ya(4a - ¢e(4a))
16a2

s=1

t=0

U= Ya(4a - (4a))
v=2a—3

w=1

=xa(2) =2a* — 1
Y =1a(2) =2a
z=09.

For most of these values, it is straightforward to see that they are nonnegative
integers, and most of the constraints in Theorem [I]can be automatically checked.
A Wolfram Language/Mathematica program which does this is available at the
author’s website[T]

Thttps://www.ericzheng.org/files/misc/prime.wl


https://www.ericzheng.org/files/misc/prime.wl

However, some of these numbers, particularly ¢, d, r, and u, are large enough
that directly computing them and substituting them into the constraint equa-
tions is not feasible, and it is not obvious that they are all nonnegative integers.
This means that we must verify constraints and manually.

e First, we consider constraint that
u? =16(a® — 1)r’y* +1
= (a® — 1)(16a%r)? + 1. (1)
This must hold because

u = Xa(4a - ¥4(4a))
16a%r = V4 (4a - 14 (4a)),

and so (u,16a®r) must satisfy the Pell equation So we only need to
show that r is indeed an integer. Note that 16a* | 16a* = 1,(2)*. By
applying Lemma [I] twice, we see that
Va(2)" | Ya(2 - ¥a(2))* = va(40)® | Ya(da - Ya(4a)),
and therefore 16a? | 1, (4a - 14(4a)).
e Next, we consider constraint viz.
(z +cu)?® = [(a +u*(u® — a))* — 1] (n + 4dy)* + 1
= (B> = 1)(n+4dy)* +1, (2)
where we have substituted 3 = a + u?(u? — a) for clarity. Again, we have
T+ cu=26%—1=x5(2)
n+4dy =26 = 15(2),

and so direct substitution shows that equation [2|is satisfied. All that re-
mains is to show that ¢ and d are nonnegative integers. For ¢, observe that
a = mod u, and so by Lemma Xa(2) = x5(2) mod u. Additionally,
since 8 > a, we definitely have ¢ > 0.

For d, notice that equation [I| implies that > = 1 mod 4y. Therefore
B8 =1 mod 4y, and 28 = 2 mod 4y. Recall that n = 2, and so d =
(28 — n)/4y is a nonnegative integer.
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