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1 Introduction

As seen in lecture, there is a polynomial P of degree 25 in 26 variables such
that P (N26)∩N is precisely the set of primes. This polynomial was constructed
by Jones, Sato, Wada, and Wiens in [Jones76], and it is a consequence of the
following theorem from their paper.

Theorem 1 (Jones et al., Theorem 2.12). For any integer k ≥ 1, in order that
k+1 be prime it is necessary and sufficient that there exist nonnegative integers
a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z such that:

(1) q = wz + h+ j,

(2) z = (gk + g + k)(h+ j) + h,

(3) (2k)3(2k + 2)(n+ 1)2 + 1 = f2,

(4) e = p+ q + z + 2n,

(5) e3(e+ 2)(a+ 1)2 + 1 = o2,

(6) x2 = (a2 − 1)y2 + 1,

(7) u2 = 16(a2 − 1)r2y4 + 1,

(8) (x+ cu)2 =
[
(a+ u2(u2 − a))2 − 1

]
(n+ 4dy)2 + 1,

(9) m2 = (a2 − 1)l2 + 1,

(10) l = k + i(a− 1),

(11) n+ l + v = y,

(12) m = p+ l(a− n− 1) + b(2a(n+ 1)− (n+ 1)2 − 1),

(13) x = q + y(a− p− 1) + s(2a(p+ 1)− (p+ 1)2 − 1),

(14) pm = z + pl(a− p) + t(2ap− p2 − 1).
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Remark. Theorem 1 requires that k ≥ 1, and correspondingly the prime is k+1.
When constructing the polynomial, it is preferable to allow k ≥ 0 instead, so we
replace k with k + 1; correspondingly, the prime becomes k + 2. We will stick
to the k ≥ 1 convention in our analysis, so that the prime is k + 1 rather than
k + 2.

The “trick” behind this is to encode the factorial function in Diophantine
equations, and then to use Wilson’s theorem to characterize the primes.

Despite this being a fairly old construction, I was unable to find anywhere
online a correct assignment witnessing the prime 2 (k = 1). But with the help
of Mathematica and some lemmata from [Jones76] and [Davis73], we can find a
solution—it turns out that the numbers are quite large.

The rest of this paper is structured as follows: first, we briefly list some
relevant lemmata about solutions to the Pell equation. Then, we give an explicit
solution to Theorem 1, witnessing the prime 2. Most of the constraints can be
verified by a computer, but in particular constraints 7 and 8 contain numbers
far too large to be automatically verified, so we will give explicit arguments for
them.
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2 The Pell Equation

The Pell equation, for some a ≥ 1, is

x2 = (a2 − 1)y2 + 1.

The solutions are known to be of the form (x, y) = (χa(n), ψa(n)), where χ and
ψ are defined by the recurrences

χa(0) = 1 χa(1) = a χa(n+ 2) = 2a · χa(n+ 1)− χa(n)

ψa(0) = 0 ψa(1) = 1 ψa(n+ 2) = 2a · ψa(n+ 1)− ψa(n).

Moreover, all pairs (x, y) of this form are solutions. For our purposes, we will
only need the following results, which are proven in [Davis73]:

Lemma 1 (Davis, Lemma 2.11). ψa(n)2 | ψa(n · ψa(n)).

Lemma 2 (Davis, Lemma 2.15). If a ≡ b mod c, then for all n,

χa(n) ≡ χb(n) mod c.

Since we will be expressing some values in our solution in terms of χ and ψ,
it is nice to have closed form expressions for them. We can derive a closed form
for χa(n) by applying some standard tricks: observe that(

χa(n+ 1)
χa(n)

)
=

(
2a −1
1 0

)n(
a
1

)
.

The matrix has eigenvalues λ1 = a −
√
a2 − 1 and λ2 = a +

√
a2 − 1, and

eigenvectors

v1 =

(
λ1
1

)
, v2 =

(
λ2
1

)
.

Now (a, 1) = (v1 + v2)/2, so applying linearity, we see that

χa(n) =
1

2
(λn1 + λn2 ) .

We can apply the same process to determine ψa(n); the only difference is that
the initial value is (1, 0) = (v2 − v1)/2

√
a2 − 1, so the solution is

ψa(n) =
1

2
√
a2 − 1

(λn2 − λn1 ) .
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3 An Explicit Solution

Claim 1. A nonnegative integer solution to the constraints in Theorem 1, cor-
responding to the prime k + 1 = 2, is:

a = 7901690358098896161685556879749949186326380713409290912

b = 0

c =
2(a+ u2(u2 − a))2 − x− 1

u

d =
2(a+ u2(u2 − a))− n

4y

e = 32

f = 17

g = 0

h = 2

i = 0

j = 5

k = 1

l = 1

m = a

n = 2

o = 8340353015645794683299462704812268882126086134656108363777

p = 3

q = 16

r =
ψa(4a · ψa(4a))

16a2

s = 1

t = 0

u = χa(4a · ψa(4a))

v = 2a− 3

w = 1

x = χa(2) = 2a2 − 1

y = ψa(2) = 2a

z = 9.

For most of these values, it is straightforward to see that they are nonnegative
integers, and most of the constraints in Theorem 1 can be automatically checked.
A Wolfram Language/Mathematica program which does this is available at the
author’s website.1

1https://www.ericzheng.org/files/misc/prime.wl
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However, some of these numbers, particularly c, d, r, and u, are large enough
that directly computing them and substituting them into the constraint equa-
tions is not feasible, and it is not obvious that they are all nonnegative integers.
This means that we must verify constraints (7) and (8) manually.

• First, we consider constraint (7), that

u2 = 16(a2 − 1)r2y4 + 1

= (a2 − 1)(16a2r)2 + 1. (1)

This must hold because

u = χa(4a · ψa(4a))

16a2r = ψa(4a · ψa(4a)),

and so (u, 16a2r) must satisfy the Pell equation 1. So we only need to
show that r is indeed an integer. Note that 16a2 | 16a4 = ψa(2)4. By
applying Lemma 1 twice, we see that

ψa(2)4 | ψa(2 · ψa(2))2 = ψa(4a)2 | ψa(4a · ψa(4a)),

and therefore 16a2 | ψa(4a · ψa(4a)).

• Next, we consider constraint (8), viz.

(x+ cu)2 =
[
(a+ u2(u2 − a))2 − 1

]
(n+ 4dy)2 + 1

= (β2 − 1)(n+ 4dy)2 + 1, (2)

where we have substituted β = a+ u2(u2 − a) for clarity. Again, we have

x+ cu = 2β2 − 1 = χβ(2)

n+ 4dy = 2β = ψβ(2),

and so direct substitution shows that equation 2 is satisfied. All that re-
mains is to show that c and d are nonnegative integers. For c, observe that
a ≡ β mod u, and so by Lemma 2, χa(2) ≡ χβ(2) mod u. Additionally,
since β > a, we definitely have c ≥ 0.

For d, notice that equation 1 implies that u2 ≡ 1 mod 4y. Therefore
β ≡ 1 mod 4y, and 2β ≡ 2 mod 4y. Recall that n = 2, and so d =
(2β − n)/4y is a nonnegative integer.
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