15-151 Midterm 2 Review

Eric Zheng

October 22, 2019

1 Named Theorems and Important Results

Theorem 1.1: Bezout's lemma

For all $a, b, c \in \mathbb{Z}$, the equation ax + by = c has a solution $x, y \in \mathbb{Z}$ if and only if $gcd(a, b) \mid c$.

Proof. We will prove the bi-implication in each direction separately.

• (\Longrightarrow) Suppose $\exists x, y \in \mathbb{Z}$ such that ax + by = c. By definition, gcd(a, b) must divide both a and b, so we can write:

$$n \cdot \operatorname{gcd}(a, b) = a$$
 $m \cdot \operatorname{gcd}(a, b) = b$

for some $n, m \in \mathbb{Z}$. So we have:

$$c = ax + by$$

= $nx \cdot \text{gcd}(a, b) + my \cdot \text{gcd}(a, b)$
= $(nx + my) \cdot \text{gcd}(a, b)$

Then $gcd(a, b) \mid c$, as required.

• (\Leftarrow) We will prove this for $a, b \in \mathbb{N}$. Since $x, y \in \mathbb{Z}$, the result holds in general. Consider the following predicate:

 $p(n) \coloneqq$ "if a + b = n and $gcd(a, b) \mid c$, then $\exists x, y \in \mathbb{Z}$ such that ax + by = c"

We proceed by induction on n = a + b.

- Base case. If n = 0, then a = b = 0, so gcd(a, b) = 0. Now if $0 \mid c$, then c = 0. Any $x, y \in \mathbb{Z}$ will satisfy ax + by = c.
- Induction step. Let $n \ge 0$ be given, and assume that p(k) holds for all $k \le n$. Let $a, b \in \mathbb{N}$ such that a + b = n + 1, and suppose $c \in \mathbb{Z}$ such that $gcd(a, b) \mid c$. Then there are three cases:

1. Case a = b = 0. This case is not possible, since n + 1 > 0.

- 2. Case one of a or b is zero. Without loss of generality, let a = 0. Then gcd(a, b) = b, so by the induction hypothesis, $b \mid c$. By definition, $\exists y \in \mathbb{Z}$ such that by = c.
- 3. Case a, b > 0. Without loss of generality, let $b \ge a$. Note that a + (b a) = b, and $b \in [n]$. Additionally, since gcd(a, b a) = gcd(a, b), we have $gcd(a, b a) \mid c$. Now since p(b) is true, there must exist some $x_0, y_0 \in \mathbb{Z}$ such that $ax_0 + (b a)y_0 = c$. But this implies that $a(x_0 y_0) + by_0 = c$, so we have found a solution to ax + by = c.

Theorem 1.2: coprime (Euclid's) lemma

For all $a, b, c \in \mathbb{Z}$, if gcd(a, b) = 1, then $a \mid bc$ implies that $a \mid c$.

Proof. Let $a, b, c \in \mathbb{Z}$ such that gcd(a, b) = 1. Now suppose that $a \mid bc$. By Bezout's lemma (Theorem 1.1), $\exists x, y \in \mathbb{Z}$ such that ax + by = 1. This implies that cax + cby = c. Clearly, $a \mid cax$, and by our assumption, $a \mid cby$. Thus, a divides their sum, or $a \mid c$, as required.

Theorem 1.3: solutions to linear Diophantine equations

For all $a, b, c \in \mathbb{Z}$, if $x_0, y_0 \in \mathbb{Z}$ satisfy $ax_0 + by_0 = c$, then for some $x, y \in \mathbb{Z}$, ax + by = c if and only if x and y are of the form:

$$x = x_0 + \frac{b}{\operatorname{gcd}(a,b)} \cdot k$$
 $y = y_0 - \frac{a}{\operatorname{gcd}(a,b)} \cdot k$

for some $k \in \mathbb{Z}$. (We have implicitly assumed that $gcd(a, b) \neq 0$, which is true if at least one of a and b is nonzero.)

Proof. We will prove each direction of the bi-implication separately.

• (\Longrightarrow) Suppose $x_0, y_0 \in \mathbb{Z}$ satisfy $ax_0 + by_0 = c$. Now consider another pair $x, y \in \mathbb{Z}$ which also satisfy ax + by = c. Now note:

$$ax + by = c = ax_0 + by_0$$
$$\implies a(x - x_0) = b(y_0 - y)$$
$$\implies \frac{a}{\gcd(a, b)}(x - x_0) = \frac{b}{\gcd(a, b)}(y_0 - y)$$

Thus, we have:

$$\frac{a}{\gcd(a,b)} \mid \frac{b}{\gcd(a,b)}(y_0 - y)$$
$$\frac{b}{\gcd(a,b)} \mid \frac{a}{\gcd(a,b)}(x - x_0)$$

But observe that:

$$\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a,b)},\frac{b}{\operatorname{gcd}(a,b)}\right) = 1$$

So by Euclid's lemma (Theorem 1.2), we must have:

$$\frac{a}{\gcd(a,b)} \mid (y_0 - y) \implies y = y_0 - \frac{a}{\gcd(a,b)} \cdot k$$
$$\frac{b}{\gcd(a,b)} \mid (x - x_0) \implies x = x_0 + \frac{b}{\gcd(a,b)} \cdot k$$

for some $k \in \mathbb{Z}$. (It technically remains to be shown that the k in the expressions for x and y are the same, but this is easy to do by contradiction.)

• (\Leftarrow) Let $x_0, y_0 \in \mathbb{Z}$ satisfy $ax_0 + by_0 = c$, and consider some arbitrary x, y of the form:

$$x = x_0 + \frac{b}{\gcd(a,b)} \cdot k$$
$$y = y_0 - \frac{a}{\gcd(a,b)} \cdot k$$

for some $k \in \mathbb{Z}$. Now consider the linear combination ax + by:

$$ax + by = a\left(x_0 + \frac{b}{\gcd(a,b)} \cdot k\right) + b\left(y_0 - \frac{a}{\gcd(a,b)} \cdot k\right)$$
$$= ax_0 + by_0 + \frac{abk}{\gcd(a,b)} - \frac{abk}{\gcd(a,b)}$$
$$= ax_0 + by_0$$
$$= c$$

Theorem 1.4: Wilson's theorem If $p \in \mathbb{N}$ is prime, then $(p-1)! \equiv -1 \mod p$. Proof. Observe that:

$$(p-1)! = (p-1)(p-2)(p-3)\dots(3)(2)(1)$$

Since $(p-1)(1) \equiv -1 \mod p$, it suffices to show instead that

$$(p-2)(p-3)\dots(3)(2) \equiv 1 \mod p$$

First, we note that since each term $a_k = (p-k)$ in this product is coprime with p, by Bezout's lemma (Theorem 1.1) it must have some multiplicative inverse among the factors. That is, there must be an integer solution to $a_k x + py = 1$ for all $2 \le k \le p-2$. By definition, we have $a_k x \equiv 1 \mod p$, so x is the multiplicative inverse of the term a_k . Under modular arithmetic, we can take $0 \le x < p-1$, yet x cannot be 0, 1, or p-1. Thus, every term a_k has a multiplicative inverse that is another term a_i .

Next, we show that no term a_k is its own inverse. If we had $a_k^2 \equiv 1 \mod p$, then $a_k^2 - 1 \equiv (a_k + 1)(a_k - 1) \equiv 0 \mod p$. Since p is prime, this implies that $a_k \equiv \pm 1 \mod p$. (This was a homework exercise!) But $a_k \not\equiv \pm 1 \mod p$ if we take k between 2 and p - 2, so the inverse of each a_k must be distinct from a_k itself.

From these two results, it follows that we can pair each term a_k with its multiplicative inverse, so the resulting product must be 1, as required.

Theorem 1.5: Fermat's little theorem

If $p \in \mathbb{N}$ is prime, then for all $a \in \mathbb{Z}$, $a^p \equiv a \mod p$. If we additionally have gcd(a, p) = 1, then $a^{p-1} \equiv 1 \mod p$.

Proof. We will prove the second version of this theorem (which requires that gcd(a, p) = 1). Let $p \in \mathbb{N}$ be prime, and denote $S = \{a, 2a, \ldots, (p-1)a\}$. We note two things:

- 1. No distinct $x, y \in S$ satisfy $x \equiv y \mod p$. To show this, assume for the sake of contradiction that $ma \equiv na \mod p$ for some $m, n \in [p-1]$, yet $m \neq n$. Then $p \mid a(m-n)$, so we must have $p \mid a$ or $p \mid m-n$ since p is prime. But gcd(a, p) = 1, so $p \nmid a$, and $m n \in [p-1]$, so $p \nmid m n$ by irreducibility. This is a contradiction, so our assumption is false.
- 2. For each $x \in S$, $\exists y \in [p-1]$ such that $x \equiv y \mod p$. We note that, under modulus p, each $x \in S$ must be congruent to some $0 \leq y < p$. But observe that $y \neq 0$, since otherwise, it would follow that $p \mid x$. Again, this is not possible by the irreducibility of p (see Theorem 2.1).

Now consider the product $a^{p-1}(p-1)!$ of all the elements in S. As we have shown, each distinct $x \in S$ is congruent to some distinct $y \in [p-1]$, so the elements are congruent to a permutation of [p-1]. It follows that:

$$a^{p-1}(p-1)! \equiv (p-1)! \mod p$$

And since, by Bezout's lemma (Theorem 1.1), each $y \in [p-1]$ has some multiplicative inverse, this is equivalent to saying:

$$a^{p-1} \equiv 1 \mod p$$

as required.

Theorem 1.6: Euler's theorem For all $a \in \mathbb{Z}$, $n \in \mathbb{N}$, if gcd(a, n) = 1, then $a^{\varphi(n)} \equiv 1 \mod n$.

Remark. Note that Fermat's little theorem (Theorem 1.5) is a special case of Euler's theorem (Theorem 1.6). Euler's theorem will not be on the exam, but it can't hurt to know it.

2 Other Interesting Results from Class

Theorem 2.1: equivalence of primality and irreducibility	
An integer p is prime if and only if it is irreducible.	

Proof. We will prove each direction of the bi-implication separately.

- (\Longrightarrow) Let $p \in \mathbb{Z}$ be a prime number. Now suppose we can express p as p = ab for some $a, b \in \mathbb{Z}$. Then $p \mid ab$, so by definition, $p \mid a$ or $p \mid b$. Without loss of generality, let $p \mid a$. Now pq = a for some $q \in \mathbb{Z}$, so $p = ab \implies p = pqb \implies 1 = qb$. It follows that b must be a unit, so p is irreducible.
- (\Leftarrow) Let $p \in \mathbb{Z}$ be irreducible, and suppose that $p \mid ab$. Now there are two cases:
 - Case $p \mid a$. In this case, p is prime by definition.
 - Case $p \nmid a$. In this case, note that, by irreducibility, the only factors of p are $\{\pm 1, \pm p\}$. Since $p \neq a$ (otherwise, $p \mid a$), we must have gcd(p, a) = 1. Then by Euclid's lemma (Theorem 1.2), we must have $p \mid b$, so p is prime by definition.

Theorem 2.2: existence of prime factorization

For all $n \in \mathbb{N}$ such that $n \geq 2$, n can be factored into the product of prime numbers.

Proof. Let p(n) := "n can be factored into the product of prime numbers". We will proceed by strong induction on n.

- Base case. Consider n = 2. Since 2 is prime, p(2) holds.
- Induction step. Let $n \ge 2$ be given, and assume that p(k) holds for all $2 \le k \le n$. Now consider n + 1. There are two possibilities:
 - 1. Case n + 1 is prime. Then p(n + 1) is true.
 - 2. Case n + 1 is not prime. Then we can write n + 1 = ab for some non-unit, non-zero $a, b \in \mathbb{N}$. But since $2 \le a, b \le n$, we know that a and b factor into primes by invoking the induction hypothesis. Thus, n + 1 = ab must factor into primes.

Theorem 2.3: uniqueness of prime factorization

For all $n \in \mathbb{N}$ such that $n \geq 2$, n can be uniquely factored into the product of prime numbers.

Proof. Consider the predicate:

 $p(n) \coloneqq "n$ can be factored uniquely into the product of primes"

We proceed by strong induction on $n \ge 2$.

- Base case. Let n = 2. There is only one way to factor 2 into primes, namely $p_1 = q_1 = 2$. Thus, p(2) holds.
- Induction step. Let $n \ge 2$ be given, and assume that p(i) holds for all $2 \le i \le n$. Consider two prime factorizations written in non-decreasing order:

$$n+1 = p_1 \cdot p_2 \cdot p_3 \cdots p_k$$
$$= q_1 \cdot q_2 \cdot q_3 \cdots q_l$$

Without loss of generality, let $p_1 \leq q_1$. Now since p_1 is prime and divides $q_1 \cdot q_2 \cdots q_l$, we must have $p_1 = q_i$ for some $i \in [l]$. But since the q's are in non-decreasing order, we must have $q_1 \leq q_i = p_1$. Since $p_1 \leq q_1 \leq p_1$, we must have $p_1 = q_1$. Then:

$$p_2 \cdot p_3 \cdots p_k = q_2 \cdot q_3 \cdots q_l$$

Now there are two possibilities:

1. If there are no more prime factors, then we have shown p(n+1) to be true.

2. Otherwise, $2 \le p_2 \cdot p_3 \cdots p_k \le n$. In this case, we invoke the induction hypothesis to show that p(n+1) is true.

Theorem 2.4: divisibility tricks

Let $n \in \mathbb{N}$ have the base-ten expansion $d_0 d_1 d_2 \dots d_r$. We claim:

1. $n \equiv \sum_{i=0}^{r} d_i \mod 3$ 2. $n \equiv \sum_{i=0}^{r} d_i \mod 9$ 3. $n \equiv \sum_{i=0}^{r} (-1)^i d_i \mod 11$

Proof. Note that the decimal expansion satisfies:

$$n = \sum_{i=0}^{r} d_i 10^i$$

Now examining each trick:

- 1. Observe that $10 \equiv 1 \mod 3$, so $10^k \equiv 1^k \equiv 1 \mod 3$ for all $k \in \mathbb{N}$.
- 2. Observe that $10 \equiv 1 \mod 9$, so $10^k \equiv 1^k \equiv 1 \mod 9$ for all $k \in \mathbb{N}$.
- 3. Observe that $10 \equiv -1 \mod 11$, so $10^k \equiv (-1)^k \mod 11$ for all $k \in \mathbb{N}$.

3 Eric's Personal Reminders

Here are a few things that I tend to forget easily:

- 1. Don't gloss over induction mechanics! In particular, remember to define the predicate as $p(n) := \dots$. Also quantify stuff where appropriate.
- 2. Don't forget the exponent in Fermat's little theorem (Theorem 1.5) is p-1, **not** p. On a similar note, the theorem has the requirement that a and p be coprime.
- 3. Go over the divisibility tricks before the exam!