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1 Named Theorems and Important Results

Theorem 1.1: Bezout’s lemma

For all a, b, c ∈ Z, the equation ax+ by = c has a solution x, y ∈ Z if and
only if gcd(a, b) | c.

Proof. We will prove the bi-implication in each direction separately.

• (=⇒) Suppose ∃x, y ∈ Z such that ax + by = c. By definition, gcd(a, b)
must divide both a and b, so we can write:

n · gcd(a, b) = a m · gcd(a, b) = b

for some n,m ∈ Z. So we have:

c = ax + by

= nx · gcd(a, b) + my · gcd(a, b)

= (nx + my) · gcd(a, b)

Then gcd(a, b) | c, as required.

• (⇐=) We will prove this for a, b ∈ N. Since x, y ∈ Z, the result holds in
general. Consider the following predicate:

p(n) := “if a + b = n and gcd(a, b) | c, then ∃x, y ∈ Z such that ax + by = c”

We proceed by induction on n = a + b.

– Base case. If n = 0, then a = b = 0, so gcd(a, b) = 0. Now if 0 | c,
then c = 0. Any x, y ∈ Z will satisfy ax + by = c.

– Induction step. Let n ≥ 0 be given, and assume that p(k) holds for
all k ≤ n. Let a, b ∈ N such that a + b = n + 1, and suppose c ∈ Z
such that gcd(a, b) | c. Then there are three cases:

1. Case a = b = 0. This case is not possible, since n + 1 > 0.
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2. Case one of a or b is zero. Without loss of generality, let a = 0.
Then gcd(a, b) = b, so by the induction hypothesis, b | c. By
definition, ∃y ∈ Z such that by = c.

3. Case a, b > 0. Without loss of generality, let b ≥ a. Note that
a + (b − a) = b, and b ∈ [n]. Additionally, since gcd(a, b − a) =
gcd(a, b), we have gcd(a, b− a) | c. Now since p(b) is true, there
must exist some x0, y0 ∈ Z such that ax0 + (b − a)y0 = c. But
this implies that a(x0−y0)+by0 = c, so we have found a solution
to ax + by = c.

Theorem 1.2: coprime (Euclid’s) lemma

For all a, b, c ∈ Z, if gcd(a, b) = 1, then a | bc implies that a | c.

Proof. Let a, b, c ∈ Z such that gcd(a, b) = 1. Now suppose that a | bc. By
Bezout’s lemma (Theorem 1.1), ∃x, y ∈ Z such that ax + by = 1. This implies
that cax + cby = c. Clearly, a | cax, and by our assumption, a | cby. Thus, a
divides their sum, or a | c, as required.

Theorem 1.3: solutions to linear Diophantine equations

For all a, b, c ∈ Z, if x0, y0 ∈ Z satisfy ax0 + by0 = c, then for some
x, y ∈ Z, ax + by = c if and only if x and y are of the form:

x = x0 +
b

gcd(a, b)
· k y = y0 −

a

gcd(a, b)
· k

for some k ∈ Z. (We have implicitly assumed that gcd(a, b) 6= 0, which
is true if at least one of a and b is nonzero.)

Proof. We will prove each direction of the bi-implication separately.

• (=⇒) Suppose x0, y0 ∈ Z satisfy ax0 +by0 = c. Now consider another pair
x, y ∈ Z which also satisfy ax + by = c. Now note:

ax + by = c = ax0 + by0

=⇒ a(x− x0) = b(y0 − y)

=⇒ a

gcd(a, b)
(x− x0) =

b

gcd(a, b)
(y0 − y)
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Thus, we have:

a

gcd(a, b)
| b

gcd(a, b)
(y0 − y)

b

gcd(a, b)
| a

gcd(a, b)
(x− x0)

But observe that:

gcd

(
a

gcd(a, b)
,

b

gcd(a, b)

)
= 1

So by Euclid’s lemma (Theorem 1.2), we must have:

a

gcd(a, b)
| (y0 − y) =⇒ y = y0 −

a

gcd(a, b)
· k

b

gcd(a, b)
| (x− x0) =⇒ x = x0 +

b

gcd(a, b)
· k

for some k ∈ Z. (It technically remains to be shown that the k in the
expressions for x and y are the same, but this is easy to do by contradic-
tion.)

• (⇐=) Let x0, y0 ∈ Z satisfy ax0 + by0 = c, and consider some arbitrary
x, y of the form:

x = x0 +
b

gcd(a, b)
· k

y = y0 −
a

gcd(a, b)
· k

for some k ∈ Z. Now consider the linear combination ax + by:

ax + by = a

(
x0 +

b

gcd(a, b)
· k
)

+ b

(
y0 −

a

gcd(a, b)
· k
)

= ax0 + by0 +
abk

gcd(a, b)
− abk

gcd(a, b)

= ax0 + by0

= c

Theorem 1.4: Wilson’s theorem

If p ∈ N is prime, then (p− 1)! ≡ −1 mod p.
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Proof. Observe that:

(p− 1)! = (p− 1)(p− 2)(p− 3) . . . (3)(2)(1)

Since (p− 1)(1) ≡ −1 mod p, it suffices to show instead that

(p− 2)(p− 3) . . . (3)(2) ≡ 1 mod p

First, we note that since each term ak = (p− k) in this product is coprime with
p, by Bezout’s lemma (Theorem 1.1) it must have some multiplicative inverse
among the factors. That is, there must be an integer solution to akx + py = 1
for all 2 ≤ k ≤ p − 2. By definition, we have akx ≡ 1 mod p, so x is the
multiplicative inverse of the term ak. Under modular arithmetic, we can take
0 ≤ x < p − 1, yet x cannot be 0, 1, or p − 1. Thus, every term ak has a
multiplicative inverse that is another term ai.

Next, we show that no term ak is its own inverse. If we had a2k ≡ 1 mod p,
then a2k − 1 ≡ (ak + 1)(ak − 1) ≡ 0 mod p. Since p is prime, this implies that
ak ≡ ±1 mod p. (This was a homework exercise!) But ak 6≡ ±1 mod p if we
take k between 2 and p− 2, so the inverse of each ak must be distinct from ak
itself.

From these two results, it follows that we can pair each term ak with its
multiplicative inverse, so the resulting product must be 1, as required.

Theorem 1.5: Fermat’s little theorem

If p ∈ N is prime, then for all a ∈ Z, ap ≡ a mod p. If we additionally
have gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Proof. We will prove the second version of this theorem (which requires that
gcd(a, p) = 1). Let p ∈ N be prime, and denote S = {a, 2a, . . . , (p − 1)a}. We
note two things:

1. No distinct x, y ∈ S satisfy x ≡ y mod p. To show this, assume for the
sake of contradiction that ma ≡ na mod p for some m,n ∈ [p − 1], yet
m 6= n. Then p | a(m − n), so we must have p | a or p | m − n since p is
prime. But gcd(a, p) = 1, so p - a, and m − n ∈ [p − 1], so p - m − n by
irreducibility. This is a contradiction, so our assumption is false.

2. For each x ∈ S, ∃y ∈ [p− 1] such that x ≡ y mod p. We note that, under
modulus p, each x ∈ S must be congruent to some 0 ≤ y < p. But observe
that y 6= 0, since otherwise, it would follow that p | x. Again, this is not
possible by the irreducibility of p (see Theorem 2.1).

Now consider the product ap−1(p − 1)! of all the elements in S. As we have
shown, each distinct x ∈ S is congruent to some distinct y ∈ [p − 1], so the
elements are congruent to a permutation of [p− 1]. It follows that:

ap−1(p− 1)! ≡ (p− 1)! mod p
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And since, by Bezout’s lemma (Theorem 1.1), each y ∈ [p− 1] has some multi-
plicative inverse, this is equivalent to saying:

ap−1 ≡ 1 mod p

as required.

Theorem 1.6: Euler’s theorem

For all a ∈ Z, n ∈ N, if gcd(a, n) = 1, then aϕ(n) ≡ 1 mod n.

Remark. Note that Fermat’s little theorem (Theorem 1.5) is a special case of
Euler’s theorem (Theorem 1.6). Euler’s theorem will not be on the exam, but
it can’t hurt to know it.

2 Other Interesting Results from Class

Theorem 2.1: equivalence of primality and irreducibility

An integer p is prime if and only if it is irreducible.

Proof. We will prove each direction of the bi-implication separately.

• (=⇒) Let p ∈ Z be a prime number. Now suppose we can express p as
p = ab for some a, b ∈ Z. Then p | ab, so by definition, p | a or p | b.
Without loss of generality, let p | a. Now pq = a for some q ∈ Z, so
p = ab =⇒ p = pqb =⇒ 1 = qb. It follows that b must be a unit, so p is
irreducible.

• (⇐=) Let p ∈ Z be irreducible, and suppose that p | ab. Now there are
two cases:

– Case p | a. In this case, p is prime by definition.

– Case p - a. In this case, note that, by irreducibility, the only factors
of p are {±1,±p}. Since p 6= a (otherwise, p | a), we must have
gcd(p, a) = 1. Then by Euclid’s lemma (Theorem 1.2), we must have
p | b, so p is prime by definition.

Theorem 2.2: existence of prime factorization

For all n ∈ N such that n ≥ 2, n can be factored into the product of
prime numbers.
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Proof. Let p(n) := “n can be factored into the product of prime numbers”. We
will proceed by strong induction on n.

• Base case. Consider n = 2. Since 2 is prime, p(2) holds.

• Induction step. Let n ≥ 2 be given, and assume that p(k) holds for all
2 ≤ k ≤ n. Now consider n + 1. There are two possibilities:

1. Case n + 1 is prime. Then p(n + 1) is true.

2. Case n + 1 is not prime. Then we can write n + 1 = ab for some
non-unit, non-zero a, b ∈ N. But since 2 ≤ a, b ≤ n, we know that a
and b factor into primes by invoking the induction hypothesis. Thus,
n + 1 = ab must factor into primes.

Theorem 2.3: uniqueness of prime factorization

For all n ∈ N such that n ≥ 2, n can be uniquely factored into the
product of prime numbers.

Proof. Consider the predicate:

p(n) := “n can be factored uniquely into the product of primes”

We proceed by strong induction on n ≥ 2.

• Base case. Let n = 2. There is only one way to factor 2 into primes,
namely p1 = q1 = 2. Thus, p(2) holds.

• Induction step. Let n ≥ 2 be given, and assume that p(i) holds for all
2 ≤ i ≤ n. Consider two prime factorizations written in non-decreasing
order:

n + 1 = p1 · p2 · p3 · · · pk
= q1 · q2 · q3 · · · ql

Without loss of generality, let p1 ≤ q1. Now since p1 is prime and divides
q1 · q2 · · · ql, we must have p1 = qi for some i ∈ [l]. But since the q’s are in
non-decreasing order, we must have q1 ≤ qi = p1. Since p1 ≤ q1 ≤ p1, we
must have p1 = q1. Then:

p2 · p3 · · · pk = q2 · q3 · · · ql

Now there are two possibilities:

1. If there are no more prime factors, then we have shown p(n + 1) to
be true.
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2. Otherwise, 2 ≤ p2 ·p3 · · · pk ≤ n. In this case, we invoke the induction
hypothesis to show that p(n + 1) is true.

Theorem 2.4: divisibility tricks

Let n ∈ N have the base-ten expansion d0d1d2 . . . dr. We claim:

1. n ≡
∑r

i=0 di mod 3

2. n ≡
∑r

i=0 di mod 9

3. n ≡
∑r

i=0(−1)idi mod 11

Proof. Note that the decimal expansion satisfies:

n =

r∑
i=0

di10i

Now examining each trick:

1. Observe that 10 ≡ 1 mod 3, so 10k ≡ 1k ≡ 1 mod 3 for all k ∈ N.

2. Observe that 10 ≡ 1 mod 9, so 10k ≡ 1k ≡ 1 mod 9 for all k ∈ N.

3. Observe that 10 ≡ −1 mod 11, so 10k ≡ (−1)k mod 11 for all k ∈ N.

3 Eric’s Personal Reminders

Here are a few things that I tend to forget easily:

1. Don’t gloss over induction mechanics! In particular, remember to define
the predicate as p(n) := “. . . ”. Also quantify stuff where appropriate.

2. Don’t forget the exponent in Fermat’s little theorem (Theorem 1.5) is p−1,
not p. On a similar note, the theorem has the requirement that a and p
be coprime.

3. Go over the divisibility tricks before the exam!
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