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In this document, I’d like to present a short proof that the sum of the
residuals in a least squares regression is equal to 0. The proof is actually well-
known (and can easily be found via an online search), but it came to me as I
was thinking about a question on our statistics midterm, and I could not resist
the temptation to typeset it. (And since I’m a second-semester senior now, I
can do whatever I want.)

1 Setting up the problem

In this section, I’ll give a short introduction to the problem of the (linear) least
squares regression model. If you’re already familiar with least squares regression,
you can probably skip this section.

In general, we are given a data set described by a bunch of points (xi, yi).
Our goal is to find some linear model that “best” fits these data. In general, a
linear model has the form:

ŷ = β0 + β1x (1)

with the two parameters β0 and β1 representing the y-intercept and slope re-
spectively. Since our model is fully described by these two parameters, when
we do a least squares regression, we’re really trying to find the optimal values
of β0 and β1.

But what do we mean by optimal? Usually, our model won’t pass through
all of the data points; i.e. there is an “error” between each actual data point
(xi, yi) and its predicted location (xi, ŷi) based on the model. We can quantify
this error and call it the residual ; more precisely, we say that at each xi, the
residual is given by:

yi − ŷi = yi − β0 − β1xi (2)

Now, these residuals may be positive or negative (if the point lies above or
below our line respectively), but we don’t really care about the sign; all we want
is the magnitude. So, we really care about the squares of the residuals. This is
what we mean when we say a “least squares” regression analysis: we are trying
to find a model, specified by the parameters β0 and β1, that minimizes the total
squared residual. More precisely, if we quantify the total squared error in the
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model as a function:

F (β0, β1) =
∑

(yi − β0 − β1xi)2 (3)

we are trying to find β0 and β1 that minimize F over the data points (xi, yi).

2 The proof

The hard part was really setting up the problem; with the tools of multivari-
ate calculus, the proof is quite straightforward from here. We know that the
minimum will occur when ∇F = 0, which implies that:

∂F

∂β0
= −2

∑
(yi − β0 − β1xi) = 0 (4)

But wait, that term inside the sum is really the same as our definition of a
residual from before! Thus, the sum of the residuals must be zero if we have
found the true least squares regression line. (And, of course, the mean of the
residuals is therefore also zero.) If you like, I will leave it up to you to apply
the second partials test to show that this extremum is really a minimum.
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