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Let’s take a look at a drag force F' = —bv? acting on a body of mass m

dropped from rest under the influence of gravitational acceleration g. From
Newton’s second law, we have:

d
mdit] =mg — bv* (1)
Separating variables and integrating, we have:
dv dt
e @
g — bv m

The right-hand side is simple enough; to solve the left-hand side, we make
the substitutions:

ymgcos = \/mg — bv?

mg cos® 0 = mg — bv* (3)
And:
J/mgsinf = Vbv

,/%cos@d@zdv (4)

With a bit of rearranging and canceling, this gives us the equivalent integral:

[ata= ©

We know that the anti-derivative of sec  is In(sec 6 +tan 6), so this becomes:

In(sec + tan6) = 4/ b—gt—f— Cq
m
secf + tanf = CeV9/m? (6)

From our original trigonometric substitutions, we can derive expressions for
secf and tan @ in terms of v, giving:

Vvmg + \IZB;) — CeVba/mt (7)
\/mg — bu



Since the object is dropped, v = 0 at t = 0, so C = 1. Then, we square both
sides to obtain:

2
Vmg + Vb

( mg U) :ew/bg/mZt
mg — bv?

\/Wg+\/5v :e\/WZt (9)
Vg — Vou

Finally, we isolate v to obtain:

mg e\/bg/mQt_l

v = - @@
b e\/bg/m2t+1
mg e\/bg/mt_e—\/bg/mt
v =

b .6‘/bg/mt+€_ bg/mt

v= n’;g tanh ( Zit) (10)

We immediately note a few things: as t — oo, v — y/mg/b. This terminal
velocity agrees well with a simpler analysis with Newton’s first law. We also
see that as the object gets more massive, the terminal velocity also increases, as
expected; as the proportionality constant for the drag force increases, terminal
velocity decreases (drag force is getting “stronger”). For fun, let’s graph v as a
function of t for various values of b, with ¢ = 9.81 ms~2 and m = 1 kg:
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