Chapter 8 Review

As taught by Ms. Tracey Pannapara, 2017-18 Term Chemistry Lecture Notes Prepared by Eric Zheng

- 1. Translate word equation to formula equation
- 2. Four signs of a chemical reaction:
 - (a) Energy released (heat or light)
 - (b) Color change
 - (c) Evolution of gas

_

- (d) Formation of precipitate
- 3. Symbols in chemical reactions (p. 258 in text):

Symbol	Explanation			
\longrightarrow	\longrightarrow "Yields"; result of reaction			
<u></u>	Reversible reaction			
(s)	(s) Solid or precipitate			
\downarrow	Precipitate			
(l) Liquid				
(aq)	(aq) Aqueous solution (dissolved in water)			
(g)	(g) Gaseous state			
\uparrow	↑ Gaseous product			
$\xrightarrow{\Delta}$ or $\xrightarrow{\text{heat}}$ Heat				
$\xrightarrow{2 \text{ atm}}$	Pressure of reaction, e.g. 2 atm			
\rightarrow	$\xrightarrow{\text{pressure}} \qquad Reaction pressure exceeds normal atmospheric press$			
$\xrightarrow{0 \ ^{\circ}\mathrm{C}}$	Reaction temperature, e.g. 0 $^{\circ}\mathrm{C}$			
$\xrightarrow{\mathrm{MnO}_2}$	Catalyst, e.g. manganese dioxide			

- 4. Seven diatomic elements: $H_2(g)$, $N_2(g)$, $O_2(g)$, $F_2(g)$, $Cl_2(g)$, $Br_2(l)$, $I_2(s)$
- 5. Types of reactions:
 - (a) Synthesis: $A + B \longrightarrow AB$
 - i. two elements \rightarrow binary compound (s)
 - ii. metal oxide + water \rightarrow metal hydroxide (aq)
 - iii. nonmetal oxide + water \rightarrow ternary acid (aq) *not redox
 - iv. metal oxide + nonmetal oxide \rightarrow ternary ionic compound (s)
 - (b) Decomposition: $AB \longrightarrow A + B$
 - i. binary compound $\xrightarrow{\Delta} 2$ elements
 - ii. metal hydroxide $\xrightarrow{\Delta}$ metal oxide (s) + steam
 - iii. metal chlorate $\xrightarrow{\Delta}$ metal chloride (s) + O₂(g)
 - iv. metal carbonate $\xrightarrow{\Delta}$ metal oxide (s) + CO₂(g)
 - v. $H_2CO_3(aq) \longrightarrow CO_2(g) + H_2O(l)$ and $H_2SO_3(aq) \longrightarrow SO_2(g) + H_2O(l)$
 - (c) Single replacement: $AX + B \longrightarrow BX + A$ or $AY + X \longrightarrow AX + Y$
 - i. More active metal replaces less active metal
 - ii. More active metal replaces H in acid

Metal	Activity	Halogen	Activity
Li Rb K Ba Sr Ca Na	React with cold H_2O (metal hydroxide) and acids, replacing hydrogen. React with oxygen, forming oxides.	$F_2 \\ Cl_2 \\ Br_2 \\ I_2$	Replace lower activity halogens, going down periodic table
Mg Al Mn Zn Cr Fe Cd	React with steam (but not cold water; metal oxide) and acids, replacing hydrogen. React with oxygen, forming oxides.		
Co Ni Sn Pb	Do not react with water. React with acids, replacing hydrogen. React with oxygen, forming oxides.		
$\begin{array}{c} H_2\\ Sb\\ Bi\\ Cu\\ Hg \end{array}$	React with oxygen, forming oxides		
Ag Pt Au	Fairly unreactive, forming oxides only indirectly		(p. 278 in text)

iii. More active metal replaces H in $\rm H_2O$ (sheet says it all; note hydroxide vs oxide) iv. Halogens

- (d) Double replacement: $AX + BY \longrightarrow AY + BX$
 - i. Translate from words to formulas
 - ii. Watch for precipitate, gas, or molecular compound (particularly H_2O)
- (e) Combustion: something $+ O_2(g)$
 - i. hydrocarbon $+ O_2(g) \longrightarrow CO_2(g) + H_2O(g)$
- 6. Oxidation numbers
 - (a) Assign to elements based on rules:
 - i. Atoms in pure elements hav oxidation number of 0
 - ii. For binary molecular, assign most electronegative and then solve for other
 - iii. F is always -1, since it is most electronegative
 - iv. H is +1 with nonmetals and -1 with metals
 - v. O usually -2, except when with F or H (peroxides)
 - vi. Sum of all oxidation numbers = overall charge (0 for a neutral compound)
 - vii. For ionic compounds, charge of each ion is oxidation number
 - (b) Name binary molecular compounds without prefixes