
Numerical Methods for Computing Eigenvectors

Eric Zheng
21-241 Final Project

December 6, 2019

Abstract

In this document, I present some background on numerical methods
for computing the eigenvectors and singular vectors of matrices. Julia
implementations of the power and QR methods are given, and the two
algorithms are compared.

Contents
1 Background: Eigenvectors and Eigenvalues 1

2 The Power Method 2
2.1 Mathematical Formulation . 2
2.2 Convergence Analysis . 4
2.3 Rayleigh Quotients . 5
2.4 Deflation . 7
2.5 Optimization for Sparse Matrices 7
2.6 Implementation . 9

3 The QR Method 10
3.1 Mathematical Formulation . 10
3.2 Going from Eigenvalues to Eigenvectors 12
3.3 Implementation . 13

4 Connection to Singular Vectors 14

5 Algorithm Comparison 14

6 Appendix: Julia Code Samples 15

1

1 Background: Eigenvectors and Eigenvalues
I assume that the reader is familiar with linear algebra at the college introduc-
tory level. In this section, I review a little bit of background to motivate the
algorithms that will be developed in subsequent sections. We begin by recalling
definition 1.1.

Definition 1.1: eigenvectors and eigenvalues

Consider an arbitrary n × n matrix A. For some x ∈ Rn (with x 6= 0),
we say that x is an eigenvector of A iff, for some λ ∈ R, Ax = λx. We
denote λ as the corresponding eigenvalue of A.

From definition 1.1 follows immediately a somewhat naive way to compute
the eigenvalues of a given matrix. Note that

Ax = λx =⇒ Ax− λx = 0

and λx = λIx, so we have

Ax− λIx = (A− λI)x = 0.

That is to say, λ ∈ Rn is an eigenvalue of A if and only if A−λI has a non-trivial
null space. A matrix has a non-trivial null space if and only if it is singular, so
we require that det(A− λI) = 0. This result is stated in theorem 1.1.

Theorem 1.1: computing eigenvalues as polynomial roots

Some λ ∈ Rn is an eigenvalue of the n × n matrix A if and only if
det(A− λI) = 0. We call det(A− λI) the characteristic polynomial for
A. The problem then becomes identifying the roots of this polynomial.

Once the eigenvalues have been computed, we can find the corresponding
eigenvectors by finding the null space of A − λI, for example by using the
reduced row echelon form. The key drawback of this method is that polynomial
root-finding is sensitive to small numerical errors [6].

However, the equivalence of eigenvalue-finding and polynomial root-finding
gives some insight into how we could approach the problem with more advanced
methods. It is known that polynomials of degree five and higher do not in
general have an exact solution by radicals [14], although we can use iterative
methods to get arbitrarily good approximations of these roots. In the following
sections, we will apply similarly iterative methodologies to find the eigenvectors
and eigenvalues of matrices.

2

2 The Power Method

2.1 Mathematical Formulation

Definition 2.1: dominant eigenvector

Let λ1, . . . , λn be the eigenvalues of the matrix A, and let x1, . . . ,xn

be corresponding eigenvalues. We call xi a dominant eigenvector if
|λi| > |λj | whenever i 6= j. The corresponding λi is called the domi-
nant eigenvalue.

The power method for computing eigenvectors takes successive powers of
the matrix Ak until some stopping criterion is reached. As k grows large, the
columns of A will approach the dominant eigenvector of A. This is stated in
theorem 2.1.

Theorem 2.1: the power method

If A is an n × n diagonalizable matrix with a dominant eigenvector x,
then the columns of Ak approach a multiple of x as k grows arbitrarily
large. (More precisely, at least one column does so.)

Proof. Since A is diagonalizable, let x1, . . . ,xn be a basis of eigenvectors for Rn,
where we order the eigenvectors so that x1 is a dominant eigenvector. Now since
the xi’s form a basis, any v ∈ Rn can be expressed as the linear combination

v = c1x1 + · · ·+ cnxn.

Then by linearity, we have

Akv = Ak(c1x1 + · · ·+ cnxn)

= Akc1x1 + · · ·+Akcnxn

= λk1c1x1 + · · ·+ λkncnxn.

But since |λ1| > |λi| for all i ≥ 2, we see that the first term λk1c1x1 dominates
as k grows very large (as long as c1 6= 0). Hence for large k, Akv ≈ λk1c1x1, if
c1 6= 0. Taking v to be the standard basis vectors then produces the desired
result, since at least one of the ei’s must have a component along x1.

One issue with the power method is that it assumes that A is both diagonal-
izable and has a dominant eigenvector. These flaws are highlighted in examples
2.1 and 2.2. Another example of the power method’s failure to converge is a
rotation matrix [1], which does not typically have real eigenvalues.

3

Example 2.1: power method on a non-diagonalizable matrix

The power method can fail when a matrix is not diagonalizable. Consider
the matrix

A =

0 −1 1
1 0 1
0 0 1

 .
The only real eigenvalue of A is λ = 1, with corresponding eigenvalue
x = (0, 1, 1). But consider the powers of A:

A2 =

−1 0 0
0 −1 2
0 0 1

 , A3 =

 0 1 −1
−1 0 1
0 0 1

 , A4 =

1 0 0
0 1 0
0 0 1

 .
Since A4 = I, higher powers will cycle and we never converge.

Example 2.2: power method without a dominant eigenvalue

The power method can fail when a matrix does not have a dominant
eigenvalue, even if it is diagonalizable. Consider the matrix

A =

[
0 1
1 0

]
.

Now A is clearly diagonalizable (it’s symmetric), but its eigenvalues are
λ = ±1, so A does not have a dominant eigenvalue. If we attempt the
power method, we find that A2 = I, so the successive powers Ak will
oscillate between A (when k is odd) and I (when k is even). Neither of
these contain the eigenvectors of A, which are (1, 1) and (1,−1).

Note that diagonalizability is a sufficient condition for the power method to
converge (when combined with a dominant eigenvalue), but it is not necessary.
Example 2.3 gives a matrix that is not diagonalizable yet converges under the
power method.

Example 2.3: power method despite non-diagonalizability

Consider the matrix
A =

[
1 0
1 1

]
.

This matrix has only one eigenvalue λ = 1 with eigenvectors (0, 1) and
(0,−1), which are not independent. But an easy induction reveals that

Ak =

[
1 0
k 1

]
whose columns indeed converge to the eigenvector (0, 1) as k grows large.

4

2.2 Convergence Analysis
The power method is a particularly elegant method for computing the dominant
eigenvector of a matrix, but how efficient is it? In other words, as we take
successive powers Ak, how quickly does λ1 dominate the result? What matters
here is comparatively how much larger |λ1| is than |λ2|: the power method
converges proportional to |λ1/λ2| [7, p. 529].

More formally, we can prove this by an argument taken from [2]: if A is
diagonalizable, then we can express any v ∈ Rn as

v = c1x1 + c2x2 + · · ·+ cnxn

where we assume c1 6= 0 for the algorithm to converge. Now after k steps, we
have

Akv = λk1c1x1 + λk2c2x2 + · · ·+ λkncnxn

= λk1

[
c1x1 +

(
λ2
λ1

)k

c2x2 + · · ·+
(
λn
λ1

)k

cnxn

]

where |λi/λ1| < 1 whenever i ≥ 2 since λ1 is the dominant eigenvalue. Now as
k → ∞, the (λ2/λ1) term will dominate the error, so we expect the algorithm
to converge proportionally to |λ2/λ1|k.

We can test this numerically with the matrix

A =

23 5 2
5 23 2
2 2 26


which has eigenvalues λ1 = 30, λ2 = 24, and λ3 = 18; the corresponding
eigenvectors are x1 = (1, 1, 1), x2 = (1, 1,−2), and x3 = (1,−1, 0). For the first
twenty iterations of the power method, we get something like figure 1, which is
fairly close to the expected (24/30)k = (4/5)k decay rate. The Julia code for
generating the plot is included in the appendix.

5

5 10 15 20
0.0

0.2

0.4

0.6

0.8

steps

ei
ge

nv
ec

to
r

er
ro

r

(4/5)^k
power method

Figure 1: Power method error for twenty steps of the algorithm, plotted against
the expected error given by |λ2/λ1|k

2.3 Rayleigh Quotients
Up until now, we have developed a method for finding the eigenvectors of a
matrix, but what about the eigenvalues? Based on definition 1.1, it is tempting
to just take an eigenvector x ∈ Rn, compute Ax = λx, and then see how much
the components of x were scaled to find λ.

The issue is that our algorithm only generates an approximation to x, not
x itself 1. Hence each of the components will not be exactly scaled by λ: some
might be a little larger than they should be, and some might be a little smaller.
The next thing that comes to mind is to let µi be the amount by which each
component of x was scaled and then just average the µi’s. Unfortunately, this
approach is sensitive to small errors, particularly around 0 [2], as demonstrated
in example 2.4.

Example 2.4: sensitivity of averaging for finding λ

Consider the matrix
A =

[
2 0
0 1

]
which has x1 = (1, 0) and x2 = (0, 1) with corresponding λ1 = 2
and λ2 = 1. Now suppose we have an eigenvector approximation
x̂1 = (1, 0.00001). This is very close to the true dominant eigenvector:

‖x̂1 − x1‖ = 0.00001,

1In fact, even if we gave the algorithm infinite time to run, it is mathematically impossible
for a computer with a finite alphabet to represent arbitrary reals, since R is uncountable.

6

yet we have

Ax̂1 =

[
2 0
0 1

] [
1

0.00001

]
=

[
2

0.00001

]
.

If we try to approximate λ1 by diving component-wise and then averag-
ing, we get:

µ1 = 2/1 = 2

µ2 = 0.00001/0.00001 = 1

which would give λ1 ≈ 3/2, which is significantly off from the true value
λ1 = 2, despite the very good eigenvector approximation.

So how should we compute eigenvalues given a corresponding eigenvector?
A common way to do this is via the Rayleigh quotient, given in definition 2.2.

Definition 2.2: Rayleigh quotient [6]

If we have an approximation x ∈ Rn for an eigenvector of A, then the
Rayleigh quotient approximation for the corresponding eigenvalue λ is
given by

λ ≈ xTAx

xTx
.

This can be thought of as the average of the µi’s weighted by the square
of each component [2], so errors around small components affect the overall
eigenvalue approximation very little. For example, using the same numbers as
example 2.4, we get

λ1 ≈
x̂T
1 Ax̂1

x̂T
1 x̂1

=
2.0000000001

1.0000000001
≈ 1.999999999

which is much closer to the true value of λ1 = 2.

2.4 Deflation
One limitation is that the power method, as presented in theorem 2.1, only
finds the dominant eigenvector of a matrix. For many physical systems, the
behavior is determined mostly by the dominant eigenvector, so this is sufficient
[6]. However, in the special case where A is symmetric, we can actually do
better. By the spectral theorem (restated in theorem 4.1), we can take the
spectral decomposition of symmetric A into orthogonal X and diagonal Λ, as in

A = XΛXT = λ1x1x
T
1 + · · ·+ λnxnx

T
n

where we sort the eigenvalues in order of magnitude. Now applying the power
method will yield x1 (which in turn can be used to find λ1). But observe that

B1 = A− λ1x1x
T
1 = λ2x2x

T
2 + · · ·+ λnxnx

T
n

7

is a symmetric matrix that has eigenvalues λ2, . . . , λn and corresponding x2, . . . ,xn!
(B1 also has a zero eigenvalue, which is not important because it is the least in
magnitude.) Hence we can apply the power method to B1 to find x2 and λ2.
We can keep on going with

B2 = B1 − λ2x2x
T
2 = λ3x3x

T
3 + · · ·+ λnxnx

T
n

to which we can apply the power method to pick off x3 and λ3. We keep on
going until we have found all n eigenvectors, a technique known as deflation.

In fact, even if A is not symmetric, we can apply a similar deflation tech-
nique for finding all the eigenvalues of A, although we don’t get any additional
eigenvectors beyond the dominant one. The reader is referred to [3] for a full
explanation, but a more general deflation procedure known as Hotelling’s de-
flation is given in theorem 2.2. In the case when we take unit eigenvectors of
a symmetric matrix, this procedure becomes the previously described deflation
procedure. There exist other techniques that are even more robust against, for
instance, rounding errors [9], but they are beyond the scope of this paper.

Theorem 2.2: Hotelling’s deflation

Suppose A is a matrix with eigenvalues λ1, . . . , λk and corresponding
eigenvalues x1, . . . ,xk. Then the matrix

B = A− λ1
xT
1 x

x1x
T
1

has eigenvalues λ2, . . . , λk, although it does not necessarily have the same
eigenvectors x2, . . . ,xk.

2.5 Optimization for Sparse Matrices
As we have developed it thus far, the power method involves computing large
powers Ak. While we can make this somewhat efficient via tricks like exponen-
tiation by squaring, matrix multiplication is an expensive thing to do; the best
known algorithms run in roughly O(n2.373) [4] for an n× n matrix. Can we do
better?

A faster approach is to reframe the problem as a bunch of matrix-vector
multiplications, which can be computed naively in O(n2). In fact, if A is a
sparse matrix (i.e. most entires are zero), matrix-vector multiplication can
become extremely efficient [1]. We can tweak theorem 2.1 slightly into theorem
2.3, whose proof is much the same as theorem 2.1.

Theorem 2.3: more efficient power method

Suppose A is an n×n diagonalizable matrix with a dominant eigenvalue
λ and corresponding eigenvector x. Then there exists some v0 ∈ Rn such

8

that
vk = Akv0 = Avk−1

approaches a multiple of x as k grows arbitrarily large.

Now if A is diagonalizable, then any v0 ∈ Rn can be expressed in the basis
of eigenvectors as

v0 = c1x1 + · · ·+ cnxn.

As long as v0 has some component c1 6= 0 along x1, then Akv0 will converge to
x1 as k grows large. This is great, since Akv0 can be recursively computed as
A(Ak−1v0), which is k matrix-vector multiplications instead of k matrix-matrix
multiplications.

But what happens if we choose an initial vector v0 with c1 = 0? In this
case, it is possible that this method will fail to converge. An example is given
in example 2.5. However, if we just choose a random v0 ∈ Rn, we get c1 6=
0 with very high probability [5, p. 53], so this is not particularly worrisome.
Additionally, even if we are incredibly unlucky and choose a v0 that is deficient
in x1, rounding errors in the computations will likely save us and push so that
c1 6= 0 [1].

Example 2.5: efficient power method with bad v0

Consider the matrix

A =

11 5 2
5 11 2
2 2 14


which has eigenvalues λ1 = 18, λ2 = 12, λ3 = 6 with corresponding
eigenvectors x1 = (1, 1, 1), x2 = (1, 1,−2), and x3 = (1,−1, 0). If we
choose a good initial vector like v0 = (1, 2, 3), we indeed get

vk → ax1 as k →∞.

However, if we instead choose a bad initial vector like v0 = (1, 0,−1)
(which is orthogonal to x1), we instead get vk → bx2. In this case, since
A was diagonalizable, we still ended up with an eigenvector of A (just
not the one we expected). If we instead had a non-diagonalizable matrix
like

B =

2 0 0
0 0 −1
0 1 0

 ,
which has real eigenvalue λ = 2 and x = (1, 0, 0), we could fail to con-
verge to anything at all if we choose v0 = (0, 1, 1). However, a good
choice of v0 = (1, 1, 1) will still converge to a multiple of x, highlighting
the importance of the initial vector selection.

9

2.6 Implementation
Based on the power method (as presented in theorem 2.1), we present algorithm
2.1 to compute the dominant eigenvector and eigenvalue of a given diagonaliz-
able matrix. The algorithm may also converge for a non-diagonalizable matrix,
but we do not guarantee this. The referenced subroutine FirstNonzeroCol
gets the first nonzero column of the given matrix (or the first whose norm ex-
ceeds some tolerance), and SquareAndNorm takes a given matrix A and then
returns A2, normalized by the magnitude of its first nonzero column.2

In this implementation of the power method, we choose to compute A2k =
AkAk rather than Ak+1 = AkA at step k because this is just as efficient (i.e. an
n×n matrix multiplication) yet produces larger powers and therefore converges
faster.

Algorithm 2.1: DominantEigen1

input : real diagonalizable n× n matrix A
parameter: tolerance ε > 0, max iterations N > 0
output : dominant eigenpair (x, λ)

A′ ← A;
i ← 0; // number of iterations so far
x ← FirstNonzeroCol(A′);
A′ ← SquareAndNormalize(A′);
while ‖x− FirstNonzeroCol(A′)‖ > ε and i < N do

x ← FirstNonzeroCol(A′);
A′ ← SquareAndNormalize(A′);
i ← i+ 1;

x ← FirstNonzeroCol(A′);
λ ← (xTAx)/(xTx);

Additionally, based on theorem 2.3, we implement the more efficient power
method as algorithm 2.2.

2If Ak does not have any nonzero columns, then A is nilpotent; its only eigenvalue is λ = 0.

10

Algorithm 2.2: DominantEigen2

input : real diagonalizable n× n matrix A
parameter: tolerance ε > 0, max iterations N > 0
output : dominant eigenpair (x, λ)

x ← choose random vector in Rn;
x ← Normalize(x);
i ← 0; // number of iterations so far
while ‖Ax− x‖ > ε and i < N do

x ← Normalize(Ax);
i ← i+ 1;

λ ← (xTAx)/(xTx);

Finally, we can use the deflation method from theorem 2.2 to write a general
power method routine (algorithm 2.3) that computes all the eigenvectors and
eigenvalues of a symmetric matrix.

Algorithm 2.3: EigenPowerSymmetric

input : real symmetric n× n matrix S
parameter: tolerance ε > 0, max iterations N > 0
output : list xs of eigenvectors and λs of eigenvalues

xs ← empty list;
λs ← empty list;
for i ∈ [n] do

x, λ ← DominantEigen(S);
S ← S − (λ/(xTx))xxT ;
append x to xs;
append λ to λs;

3 The QR Method

3.1 Mathematical Formulation
Another iterative method to compute the eigenvalues of a matrix is known as
the QR method. The key insight behind this method is that similar matrices
have the same eigenvalues, a fact proven in theorem 3.1.

Theorem 3.1: similar matrices have the same eigenvalues

Suppose A and C are similar square matrices. Then if λ ∈ R is an
eigenvalue of A if and only if it is an eigenvalue of C.

11

Proof. Suppose A = BCB−1. Now consider an eigenvalue λ of A with eigen-
vector x. Then

Ax = λx =⇒ BCB−1x = λx.

But B is invertible, so we can multiply on the left by B−1 to obtain:

B−1BCB−1 = B−1(λx) =⇒ C(B−1x) = λ(B−1x).

Now sinceB−1 is invertible, B−1x 6= 0 if x 6= 0 (i.e. B−1 has a trivial null space),
which means that we have found an eigenvector B−1x of C with eigenvalue λ.
An identical argument in the other direction shows that any eigenvalue of C is
also an eigenvalue of A, which concludes the proof.

Additionally, recall that the eigenvalues of a triangular matrix lie on its
diagonal [7, p. 294]. (This follows from the fact that det(A − λI) = 0 and
the determinant of triangular A is the product of the diagonal entries.) This
fact, combined with theorem 3.1, suggests the following method [7, p. 530] of
computing the eigenvalues of A:

1. Somehow transform A into a similar triangular matrix B.

2. Read the eigenvalues off of the diagonal entires of B.

This is not exactly the QR method, but it captures much of the intuition behind
the QR method, which is presented in theorem 3.2.

Theorem 3.2: the QR method [7, p. 530]

Suppose we have the matrix A. We form the sequence

A0 = A, A0 = Q0R0

A1 = R0Q0, A1 = Q1R1

A2 = R1Q1, A2 = Q2R2

...

which essentially takes the QR decomposition of Ak at each step and
reverses the factors to find the next Ak+1. In many cases, as k → ∞,
the Ak’s approach an upper triangular matrix that is similar to A.

Proof. It is not always true that the Ak’s tend to a triangular matrix; in fact,
according to [8], it is not known in general that the QR method converges for
non-symmetric matrices, although it usually works very well. However, it is
always true that Ak is similar to A. To show this, let A = QR and A1 = RQ
for orthogonal Q and triangular R. But note that

QA1Q
T = QRQQT = QR = A

so there exists a matrix B such that A = BA1B
−1, namely B = QT . At each

step, the new Ak+1 is similar to the previous Ak, as desired.

12

The basic QR method, as presented in theorem 3.2, does not always con-
verge. An example of this, taken from [8], is given in example 3.1. There are
more advanced techniques for shifting the Ak’s to improve the algorithm’s con-
vergence; the reader is referred to [7, p. 530] for details. Even this basic QR
algorithm already has several advantages over deflation-based techniques such
as the power method; it yields all the eigenvalues without suffering the rounding
errors that deflation introduces [9].

Example 3.1: QR algorithm failure

Consider the matrix
A =

[
0 1
1 0

]
which permits the QR decomposition

Q =

[
0 1
1 0

]
, R =

[
1 0
0 1

]
.

But A′ = RQ = A, so the algorithm gets stuck and does not converge to
a triangular matrix at all.

Of course, the QR algorithm is not perfect. Although there are advanced
tricks to speed up the process, each step in the basic version presented in theorem
3.2 takes O(n3) time, and converge can be slow [11]. This is especially true for
very large systems where we only care about a few eigenvectors; in this case, we
are often better served by the power method [9]. Despite this, the QR method
and its variants are some of the most popular eigenvalue algorithms [7, p. 530]
and have been for the past fifty years [8], especially for dense matrices [13].

3.2 Going from Eigenvalues to Eigenvectors
The QR method, as presented in theorem 3.2, will find all of the eigenvalues of
A, but now we are faced with the opposite problem that we had with the power
method: how do we go from eigenvalues to the corresponding eigenvectors? Of
course, by theorem 1.1, x ∈ N(A− λI), so we could use elimination to get the
reduced row echelon form of A−λI and thus the null space, but is there a more
sophisticated technique we could employ?

One way we could do it is called the inverse power method [8]. This method
relies on a few key observations:

• A and A− µI have the same eigenvectors, for µ ∈ R.

• If the λi’s are the eigenvalues of A, then (λi − µ)’s are the eigenvalues of
A− µI.

• (A−µI) and (A−µI)−1 have the same eigenvectors but reciprocal eigen-
values. (In general, as long as µ is not an eigenvalue of A, A− µI will be
invertible, since det(A− µI) 6= 0 if µ is not an eigenvalue.)

13

Suppose we have the eigenvalues λ1, . . . , λn of A, and we wish to find the eigen-
vector xi corresponding to λi. We can take some µ that is closer to λi than it
is to all the other eigenvalues but is not an eigenvalue itself. Then (A − µI)
will have the same eigenvalues as A itself. We apply the power method on
(A− µI)−1—we know that the eigenvalues of (A− µI)−1 are

1

λ1 − µ
, . . . ,

1

λn − µ
.

But we selected µ ∈ R to be close to λi, such that |λi − µ| < |λj − µ| for i 6= j.
Then the dominant eigenvalue of (A−µI)−1 is 1/(λi−µ), so when we apply the
power method to (A−µI)−1, we will get back xi, the corresponding eigenvector.

Besides cheating a bit by requiring the power method, one obvious objection
to using the inverse power method to get eigenvectors is that it involves the
computation of a matrix inverse. However, a clever observation can make this
much more efficient [10]: an iteration B−1x = x′ is the same as numerically
solving Bx′ = x, which can be done efficiently many times over by, for example,
taking the LU decomposition of B.

3.3 Implementation
The QR method from theorem 3.2 can be more or less directly transcribed
into algorithm 3.1, whose Julia implementation is given in the appendix. The
referenced subroutine QRDecomposition can be accomplished using a variety
of methods, such as the Gram-Schmidt algorithm [7, p. 327]. In practice, more
advanced techniques are favored due to numerical stability with floating-point
arithmetic [15].

Algorithm 3.1: EigenQR

input : real n× n matrix A
parameter: tolerance ε > 0, max iterations N > 0
output : eigenvalues λs

Q,R ← QRDecomposition(A);
A′ ← RQ;
i ← 0; // number of iterations so far
while ‖A′ −A‖ > ε and i < N do

Q,R ← QRDecomposition(A′);
A ← A′;
A′ ← RQ;
i ← i+ 1;

λs ← diagonal entries of A′;

14

4 Connection to Singular Vectors
Up until now, we have been almost exclusively concerned with finding the eigen-
vectors and eigenvalues of a matrix. But what about finding the singular vectors
of a matrix?

Note that the singular vectors of anym×nmatrix A are just the eigenvectors
of ATA, so by finding the eigenvectors we already have a procedure for finding
the singular vectors. To make the connection even better, note that ATA is
symmetric, so by theorem 4.1 it is in fact diagonalizable. We can thus reliably
use both the power and QR methods to find both the eigenvectors and eigenval-
ues of ATA, which give us the singular vectors and values of A. We therefore do
not develop a separate algorithm for finding the singular value decomposition
of a matrix.

Theorem 4.1: spectral theorem for real symmetric matrices

If A is a real symmetric n× n matrix, then A has n orthonormal eigen-
vectors. The reader is referred to [12] for a full proof of this theorem.

5 Algorithm Comparison
In this section, I summarize the advantages and disadvantages of the power and
QR algorithms. I also present some data on their respective convergences on
randomly generated matrices.

The power method is perhaps the simplest and most intuitive of all iterative
eigenvector algorithms, and its techniques form the basis for many of the more
complex algorithms [2]. In its most efficient form, it makes use of matrix-vector
multiplications, which are especially efficient on sparse matrices. However, its
convergence is dependent on |λ2/λ1|; if λ2 is close to λ1, the power method
can converge very slowly, and if λ2 = λ1, the algorithm may not converge at
all. Finally, the power method only gives the dominant eigenvector (and by
extension, the dominant eigenvalue), which is typically sufficient. While we can
use the “inverse” power method to find the smallest eigenvalue, finding any of
the other eigenvalues requires the introduction of some deflation techniques,
which reduce accuracy by introducing rounding errors at each step.

The QR method is one of the most celebrated advances in numerical lin-
ear algebra and, with the addition of some convergence tricks, forms the basis
for many real-world eigenvalue solvers. However, in its basic form (as present
in theorem 3.2), it can become inefficient for large matrices, and it does not
necessarily converge without the introduction of some shifting techniques.

Finally, what’s a comparison of algorithms without some head-to-head bench-
marking? Figure 2 compares these two algorithms on finding the greatest eigen-
value of a randomly generated 5 × 5 matrix. Of course, the comparison is not
entirely fair; the power and QR algorithms provide different things (dominant

15

eigenvalue/vector vs. all eigenvalues), but it’s as close a direct comparison as
can be made. The Julia code for the comparison is given in the appendix.

5 10 15 20
0.0

0.1

0.2

0.3

0.4

steps

ei
ge

nv
al

ue
 e

rr
or

power method

5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

steps

ei
ge

nv
al

ue
 e

rr
or

QR method

Figure 2: The power method (left) and QR method (right) on the same ran-
domly generated 5× 5 diagonalizable matrix

6 Appendix: Julia Code Samples
In this appendix, I provide Julia implementations for the major algorithms
presented. The Julia code for generating the plots in this paper is also included.
Note that the original source code made use of some Unicode characters that
are not easily reproducible with LATEX, so some variables have been renamed.
A direct copy of the original source code can be conveniently obtained from
https://github.com/air-wreck/eigen.

1 # project.jl
2 #
3 # 21-241 Final Project, Fall 2019
4 # Eric Zheng, Section 4K
5 #
6 # This file provides numerical methods for computing the eigenvectors and
7 # singular vectors of matrices.
8
9 using LinearAlgebra;

10
11 " DominantEigen(A)
12
13 Compute the dominant eigenvector of the diagonalizable matrix A using
14 the power method. We can opt to use either the column method or the vector
15 method, although the vector method is used by default.
16 "
17 function DominantEigen(A; tol=0.00001, max_iter=1000, method=:vector)
18 if method == :column
19 return DominantEigen1(A, tol=tol, max_iter=1000)
20 elseif method == :vector
21 return DominantEigen2(A, tol=tol, max_iter=1000)
22 else
23 error("method not recognized")
24 end

16

https://github.com/air-wreck/eigen

25 end
26
27 function DominantEigen1(A; tol=0.00001, max_iter=1000)
28
29 function first_nonzero_col(B; e=0.000001)
30 for i in axes(B, 1)
31 col = B[:,i]
32 if norm(col) > e
33 return col
34 end
35 end
36 return nothing
37 end
38
39 # squares a matrix and then makes the first nonzero column an unit vector
40 function square_and_normalize(B; e=0.000001)
41 B ^= 2
42 return B / norm(first_nonzero_col(B))
43 end
44
45 # continue computing powers of A until the Euclidean norm between
46 # iterations is less than the tolerance
47 A0 = A
48 iters::Int = 0
49 x = first_nonzero_col(A)
50 A = square_and_normalize(A)
51 while norm(x - first_nonzero_col(A)) > tol && iters < max_iter
52 x = first_nonzero_col(A)
53 A = square_and_normalize(A)
54 iters += 1
55 end
56 x = first_nonzero_col(A)
57 l = dot(A0 * x, x) / dot(x, x)
58 return (x = x, l = l)
59 end
60
61 function DominantEigen2(A; tol=0.00001, max_iter=1000)
62
63 function normalize(x)
64 return x / norm(x)
65 end
66
67 x = normalize(rand(size(A, 1)))
68 iters = 0
69 while norm(normalize(A * x) - x) > tol && iters < max_iter
70 x = normalize(A * x)
71 iters += 1
72 end
73 l = dot(A * x, x) / dot(x, x)
74 return (x = x, l = l)
75 end
76
77 " EigenPowerSymmetric(S)
78
79 Compute the eigenvectors of the symmetric matrix S using the power method.
80 This still works on non-symmetric matrices, but only returns the eigenvalues
81 and not the correct eigenvectors.

17

82 "
83 function EigenPowerSymmetric(S; tol=0.00001, max_iter=1000)
84 xs = []
85 ls = []
86 for i in axes(S, 1) # by Spectral Thm, symmetric S has n eigenvectors
87 # so we don’t need to worry about zero, I think
88 x, l = DominantEigen2(S)
89 S -= l / (x’ * x) * x * x’
90 push!(xs, x)
91 push!(ls, l)
92 end
93 return (x = hcat(xs...), l = hcat(ls...))
94 end
95
96 " EigenQR(A)
97
98 Compute the eigenvalues of the square matrix A using QR decomposition.
99 "

100 function EigenQR(A; tol=0.00001, max_iter=1000)
101 Q, R = qr(A)
102 B = R * Q
103 iters = 1
104 while norm(A - B) > tol && iters < max_iter
105 Q, R = qr(B)
106 A = B
107 B = R * Q
108 iters += 1
109 end
110 return diag(B)
111 end
112
113 " EigenSolver(A)
114
115 Ultimate subroutine to compute the eigenvectors and eigenvalues
116 of the square matrix A. If no method is given, default to the power method.
117
118 Returns: ‘(x, l)‘ (for :power), ‘l‘ (for :qr)
119
120 Examples:
121 ‘‘‘julia-repl
122 A = [1 3 ; 3 1];
123 EigenSolver(A, tol=0.001, method=:qr)
124 ‘‘‘
125
126 Notes:
127 * The ‘:power‘ method can be applied to non-symmetric matrices, as long as they
128 are diagonalizable. In this case, the eigenvalues will be correct, but not
129 the eigenvectors.
130 "
131 function EigenSolver(A; tol=0.00001, max_iter=1000, method=:power)
132 if method == :power
133 return EigenPowerSymmetric(A, tol=tol, max_iter=max_iter)
134 elseif method == :qr
135 return EigenQR(A, tol=tol)
136 else
137 error("method not recognized")
138 end

18

139 end
140
141 " Singular(A)
142
143 Compute the singular vectors and values for the matrix A.
144
145 Returns: ‘(v, s)‘
146
147 Examples:
148 ‘‘‘julia-repl
149 A = [1 2 3 4 ; 5 6 7 8 ; 9 10 11 12];
150 Singular(A)
151 ‘‘‘
152
153 Notes:
154 * e > 0 is the tolerance for comparing a singular value to zero.
155 The default is e = 0.0000001.
156 "
157 function Singular(A; tol=0.00001, max_iter=1000, method=:power, e=0.0000001)
158 v, l = EigenSolver(A’ * A, tol=tol, max_iter=max_iter, method=method)
159 s = map(sqrt, filter(x -> x > e, l))
160 return (v = v[:,1:length(s)], s = s)
161 end

And this is the source code for all the graphs produced:
1 # project-graph.jl
2 #
3 # 21-241 Final Project, Fall 2019
4 # Eric Zheng, Section 4K
5 #
6 # This file makes the pretty plots for the project.
7
8 include("project.jl")
9 using Plots

10
11 # we reimlpement DominantEigen to keep
12 # track of prior values for plotting
13 function PlotPowerConvergence()
14 A0 = [23 5 2 ; 5 23 2 ; 2 2 26]
15 x = [1,1,1] / norm([1,1,1])
16 A = A0 / norm(A0[:,1])
17
18 xs = 1:20 # number of algorithm steps
19 ys = Float64[]
20 for _ in xs
21 push!(ys, norm(A[:,1] - x))
22 A *= A0
23 A /= norm(A[:,1])
24 end
25 plot(xs, map(i -> (4/5)^i, xs),
26 label="(4/5)^k", xlabel="steps", ylabel="eigenvector error")
27 scatter!(xs, ys, label="power method")
28 savefig("power-method.pdf")
29 end
30
31 function RandomDiag(n)
32 A = rand(n, n)

19

33 ls = rand(n)
34 l = sort(ls, rev=true)[1]
35 A = A * diagm(0 => ls) / A
36 return A, l
37 end
38
39 function PlotPowerCmp(A0, l, n)
40 A = A0 / norm(A0[:,1])
41 xs = 1:n
42 ys = Float64[]
43 for _ in xs
44 x = A[:,1]
45 push!(ys, abs(dot(A0 * x, x) / dot(x, x) - l))
46 A *= A0
47 A /= norm(A[:,1])
48 end
49 scatter(xs, ys, label="power method",
50 xlabel="steps", ylabel="eigenvalue error")
51 savefig("power-cmp.pdf")
52 end
53
54 function PlotQRCmp(A0, l, n)
55 Q, R = qr(A0)
56 A = R * Q
57 ys = Float64[]
58 xs = 1:n
59 for _ in xs
60 guess = sort(diag(A), rev=true)[1]
61 push!(ys, abs(guess - l))
62 Q, R = qr(A)
63 A0 = A
64 A = R * Q
65 end
66 scatter(xs, ys, label="QR method",
67 xlabel="steps", ylabel="eigenvalue error")
68 savefig("qr-cmp.pdf")
69 end
70
71 function PlotPowerQRCmp()
72 A, l = RandomDiag(5)
73 PlotPowerCmp(A, l, 20)
74 PlotQRCmp(A, l, 20)
75 end

References
[1] https://www.cs.huji.ac.il/~csip/tirgul2.pdf

[2] https://web.mit.edu/18.06/www/Spring17/Power-Method.
pdf

[3] http://www.macs.citadel.edu/chenm/344.dir/08.dir/
lect4_2.pdf

[4] https://www.cs.toronto.edu/~yuvalf/Limitations.pdf

20

https://www.cs.huji.ac.il/~csip/tirgul2.pdf
https://web.mit.edu/18.06/www/Spring17/Power-Method.pdf
https://web.mit.edu/18.06/www/Spring17/Power-Method.pdf
http://www.macs.citadel.edu/chenm/344.dir/08.dir/lect4_2.pdf
http://www.macs.citadel.edu/chenm/344.dir/08.dir/lect4_2.pdf
https://www.cs.toronto.edu/~yuvalf/Limitations.pdf

[5] Blum, Hopcroft, and Kannan. Foundations of Data Science. https://
www.cs.cornell.edu/jeh/book.pdf

[6] http://ergodic.ugr.es/cphys/lecciones/fortran/power_
method.pdf

[7] Strang. Introduction to Linear Algebra, fifth edition.

[8] http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/
QRalgorithm.html

[9] http://www.robots.ox.ac.uk/~sjrob/Teaching/EngComp/
ecl4.pdf

[10] http://www.ohiouniversityfaculty.com/youngt/
IntNumMeth/lecture16.pdf

[11] https://math.nyu.edu/~stadler/num1/material/num1_
eigenvalues.pdf

[12] http://www-math.mit.edu/~dav/spectral.pdf

[13] Wang and Gragg. Convergence of the shifted QR algorithm for unitary
Hessenberg matrices. Mathematics of Computation 70(240).

[14] Rosen. Niels Henrik Abel and equations of the fifth degree. The American
Mathematical Monthly 102(6).

[15] http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/
Householder.html

21

https://www.cs.cornell.edu/jeh/book.pdf
https://www.cs.cornell.edu/jeh/book.pdf
http://ergodic.ugr.es/cphys/lecciones/fortran/power_method.pdf
http://ergodic.ugr.es/cphys/lecciones/fortran/power_method.pdf
http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/QRalgorithm.html
http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/QRalgorithm.html
http://www.robots.ox.ac.uk/~sjrob/Teaching/EngComp/ecl4.pdf
http://www.robots.ox.ac.uk/~sjrob/Teaching/EngComp/ecl4.pdf
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/lecture16.pdf
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/lecture16.pdf
https://math.nyu.edu/~stadler/num1/material/num1_eigenvalues.pdf
https://math.nyu.edu/~stadler/num1/material/num1_eigenvalues.pdf
http://www-math.mit.edu/~dav/spectral.pdf
http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/Householder.html
http://pi.math.cornell.edu/~web6140/TopTenAlgorithms/Householder.html

	Background: Eigenvectors and Eigenvalues
	The Power Method
	Mathematical Formulation
	Convergence Analysis
	Rayleigh Quotients
	Deflation
	Optimization for Sparse Matrices
	Implementation

	The QR Method
	Mathematical Formulation
	Going from Eigenvalues to Eigenvectors
	Implementation

	Connection to Singular Vectors
	Algorithm Comparison
	Appendix: Julia Code Samples

